[PATCH v4 2/2] staging: Add driver for XillyUSB (Xillybus variant for USB)

Greg KH gregkh at linuxfoundation.org
Sun Mar 21 12:23:43 UTC 2021


On Thu, Mar 11, 2021 at 11:50:33AM +0200, eli.billauer at gmail.com wrote:
> From: Eli Billauer <eli.billauer at gmail.com>
> 
> The XillyUSB driver is the USB variant for the Xillybus FPGA IP core.
> Even though it presents a nearly identical API on the FPGA and host,
> it's almost a complete rewrite of the driver: The framework for exchanging
> data on a USB bus is fundamentally different from doing the same with a
> PCIe interface, which leaves very little in common between the existing
> driver and the new one for XillyUSB.
> 
> Signed-off-by: Eli Billauer <eli.billauer at gmail.com>
> ---
> 
> Notes:
>     Changelog:
>     v4:
>       (No changes)
>     
>     v3:
>       - Move to staging
>       - Rely on xillybus_class for device file operations
>       - Fix no return value bug in xillyusb_discovery()
>       - Add module parameters for URB buffer size and count

Don't move to staging, let's do this right the first time, it will just
take too much work to get this out of staging instead of the correct way
now.


>     
>     v2:
>       - Add comment in Kconfig file, saying XILLYUSB really doesn't depend
>         on XILLYBUS (following comment by Randy Dunlap)
>       - Use SEEK_* predefined constants instead of numbers
> 
>  MAINTAINERS                         |    1 +
>  drivers/staging/Kconfig             |    2 +
>  drivers/staging/Makefile            |    1 +
>  drivers/staging/xillyusb/Kconfig    |   20 +
>  drivers/staging/xillyusb/Makefile   |    6 +
>  drivers/staging/xillyusb/TODO       |   13 +
>  drivers/staging/xillyusb/xillyusb.c | 2184 +++++++++++++++++++++++++++
>  7 files changed, 2227 insertions(+)
>  create mode 100644 drivers/staging/xillyusb/Kconfig
>  create mode 100644 drivers/staging/xillyusb/Makefile
>  create mode 100644 drivers/staging/xillyusb/TODO
>  create mode 100644 drivers/staging/xillyusb/xillyusb.c
> 
> diff --git a/MAINTAINERS b/MAINTAINERS
> index d92f85ca831d..1bf73b132e31 100644
> --- a/MAINTAINERS
> +++ b/MAINTAINERS
> @@ -19749,6 +19749,7 @@ M:	Eli Billauer <eli.billauer at gmail.com>
>  L:	linux-kernel at vger.kernel.org
>  S:	Supported
>  F:	drivers/char/xillybus/
> +F:	drivers/staging/xillyusb/
>  
>  XLP9XX I2C DRIVER
>  M:	George Cherian <gcherian at marvell.com>
> diff --git a/drivers/staging/Kconfig b/drivers/staging/Kconfig
> index b22f73d7bfc4..6fcbc6f90224 100644
> --- a/drivers/staging/Kconfig
> +++ b/drivers/staging/Kconfig
> @@ -114,4 +114,6 @@ source "drivers/staging/wfx/Kconfig"
>  
>  source "drivers/staging/hikey9xx/Kconfig"
>  
> +source "drivers/staging/xillyusb/Kconfig"
> +
>  endif # STAGING
> diff --git a/drivers/staging/Makefile b/drivers/staging/Makefile
> index 2245059e69c7..42dfd6a4ca28 100644
> --- a/drivers/staging/Makefile
> +++ b/drivers/staging/Makefile
> @@ -47,3 +47,4 @@ obj-$(CONFIG_QLGE)		+= qlge/
>  obj-$(CONFIG_WIMAX)		+= wimax/
>  obj-$(CONFIG_WFX)		+= wfx/
>  obj-y				+= hikey9xx/
> +obj-$(CONFIG_XILLYUSB)		+= xillyusb/
> diff --git a/drivers/staging/xillyusb/Kconfig b/drivers/staging/xillyusb/Kconfig
> new file mode 100644
> index 000000000000..af7251104b42
> --- /dev/null
> +++ b/drivers/staging/xillyusb/Kconfig
> @@ -0,0 +1,20 @@
> +# SPDX-License-Identifier: GPL-2.0-only
> +#
> +# XillyUSB devices
> +#
> +
> +config XILLYUSB
> +	tristate "Xillybus generic FPGA interface for USB"
> +	depends on USB
> +	select CRC32
> +	select XILLYBUS_CLASS

Depend on it, don't select it.

> +	help
> +	  XillyUSB is the Xillybus variant which uses USB for communicating
> +	  with the FPGA.
> +
> +	  Xillybus is a generic interface for peripherals designed on
> +	  programmable logic (FPGA). The driver probes the hardware for
> +	  its capabilities, and creates device files accordingly.
> +
> +	  Set to M if you want Xillybus to use USB for communicating with
> +	  the FPGA.

Module name?

> diff --git a/drivers/staging/xillyusb/Makefile b/drivers/staging/xillyusb/Makefile
> new file mode 100644
> index 000000000000..1b45211992f5
> --- /dev/null
> +++ b/drivers/staging/xillyusb/Makefile
> @@ -0,0 +1,6 @@
> +# SPDX-License-Identifier: GPL-2.0-only
> +#
> +# Makefile for XillyUSB driver
> +#
> +
> +obj-$(CONFIG_XILLYUSB)		+= xillyusb.o
> diff --git a/drivers/staging/xillyusb/TODO b/drivers/staging/xillyusb/TODO
> new file mode 100644
> index 000000000000..0cb6a005ada4
> --- /dev/null
> +++ b/drivers/staging/xillyusb/TODO
> @@ -0,0 +1,13 @@
> +XillyUSB driver
> +===============
> +
> +This driver is the USB counterpart for the driver at drivers/char/xillybus/.
> +See Documentation/driver-api/xillybus.rst.
> +
> +TODO
> +----
> +  - Enhance code reuse with the existing Xillybus driver.
> +
> +  - General code review.

Both should not be a reason for staging.

> +
> +Patches to: Eli Billauer <eli.billauer at gmail.com>
> \ No newline at end of file
> diff --git a/drivers/staging/xillyusb/xillyusb.c b/drivers/staging/xillyusb/xillyusb.c
> new file mode 100644
> index 000000000000..bcf55c1a380d
> --- /dev/null
> +++ b/drivers/staging/xillyusb/xillyusb.c
> @@ -0,0 +1,2184 @@
> +// SPDX-License-Identifier: GPL-2.0-only
> +/*
> + * Copyright 2020 Xillybus Ltd, http://xillybus.com
> + *
> + * Driver for the XillyUSB FPGA/host framework.
> + *
> + * This driver interfaces with a special IP core in an FPGA, setting up
> + * a pipe between a hardware FIFO in the programmable logic and a device
> + * file in the host. The number of such pipes and their attributes are
> + * set up on the logic. This driver detects these automatically and
> + * creates the device files accordingly.
> + */
> +
> +#include <linux/types.h>
> +#include <linux/slab.h>
> +#include <linux/list.h>
> +#include <linux/device.h>
> +#include <linux/module.h>
> +#include <asm/byteorder.h>
> +#include <linux/io.h>
> +#include <linux/interrupt.h>
> +#include <linux/sched.h>
> +#include <linux/fs.h>
> +#include <linux/spinlock.h>
> +#include <linux/mutex.h>
> +#include <linux/atomic.h>
> +#include <linux/workqueue.h>
> +#include <linux/crc32.h>
> +#include <linux/poll.h>
> +#include <linux/delay.h>
> +#include <linux/usb.h>
> +
> +#include <linux/xillybus_class.h>
> +
> +MODULE_DESCRIPTION("Driver for XillyUSB FPGA IP Core");
> +MODULE_AUTHOR("Eli Billauer, Xillybus Ltd.");
> +MODULE_VERSION("1.0");
> +MODULE_ALIAS("xillyusb");
> +MODULE_LICENSE("GPL v2");
> +
> +static unsigned int urb_bufnum = 8;
> +module_param(urb_bufnum, uint, 0644);
> +MODULE_PARM_DESC(urb_bufnum, "Number of URB buffers to allocate for each endpoint");
> +
> +static unsigned int urb_buforder = 4;
> +module_param(urb_buforder, uint, 0644);
> +MODULE_PARM_DESC(urb_buforder, "Size order of each URB buffer. The buffer size is 2^(urb_buforder+12) bytes");

This is not the 1990's, do not use module parameters for device-specific
things as these are a driver-wide.

Just pick the numbers you find works the best, and if it's a problem,
dynamically change them as the code runs.  No need for a user to pick
this as they have no idea what will work or not.

> +
> +#define XILLY_RX_TIMEOUT (10 * HZ / 1000)
> +#define XILLY_RESPONSE_TIMEOUT (500 * HZ / 1000)
> +
> +#define LOG2_IDT_FIFO_SIZE 16
> +#define LOG2_INITIAL_FIFO_BUF_SIZE 16
> +
> +#define MSG_EP_NUM 1
> +#define IN_EP_NUM 1

tabs?

> +
> +static const char xillyname[] = "xillyusb";
> +/* err_name is used in log messages, where dev_err() might fail */
> +static const char *err_name = xillyname;

Where will dev_err() fail?


> +
> +static DEFINE_MUTEX(open_mutex);

One mutex for all devices?

> +
> +static unsigned int fifo_buf_order;
> +
> +#define USB_VENDOR_ID_XILINX		0x03fd
> +#define USB_VENDOR_ID_ALTERA		0x09fb
> +
> +#define USB_PRODUCT_ID_XILLYUSB		0xebbe
> +
> +static const struct usb_device_id xillyusb_table[] = {
> +	{ USB_DEVICE(USB_VENDOR_ID_XILINX, USB_PRODUCT_ID_XILLYUSB) },
> +	{ USB_DEVICE(USB_VENDOR_ID_ALTERA, USB_PRODUCT_ID_XILLYUSB) },
> +	{ }
> +};
> +
> +MODULE_DEVICE_TABLE(usb, xillyusb_table);
> +
> +struct xillyusb_dev;
> +
> +struct xillyfifo {
> +	unsigned int bufsize; /* In bytes, always a power of 2 */
> +	unsigned int bufnum;
> +	unsigned int size; /* Lazy: Equals bufsize * bufnum */
> +	unsigned int buf_order;
> +	atomic_t fill; /* Number of bytes in the FIFO */

Why atomic?

> +	wait_queue_head_t waitq;
> +	unsigned int readpos;
> +	unsigned int readbuf;
> +	unsigned int writepos;
> +	unsigned int writebuf;
> +	void **mem;

Point to the type of data please, do not use void * when you know this.

> +};
> +
> +struct xillyusb_channel;
> +
> +struct xillyusb_endpoint {
> +	struct xillyusb_dev *xdev;
> +
> +	struct list_head buffers;
> +	struct list_head filled_buffers;
> +	spinlock_t buffers_lock; /* protect these two lists */
> +
> +	unsigned int order;
> +	unsigned int buffer_size;
> +
> +	unsigned int fill_mask;
> +
> +	int outstanding_urbs;
> +
> +	struct usb_anchor anchor;
> +
> +	struct xillyfifo fifo;
> +
> +	struct work_struct workitem;
> +	bool shutting_down;
> +
> +	u8 ep_num;
> +};
> +
> +struct xillyusb_channel {
> +	struct xillyusb_dev *xdev;
> +
> +	struct xillyfifo *in_fifo;
> +	struct xillyusb_endpoint *out_ep;
> +	struct mutex lock; /* protect @out_ep and @in_fifo */
> +
> +	struct mutex in_mutex; /* serialize fops on FPGA to host stream */
> +	struct mutex out_mutex; /* serialize fops on host to FPGA stream */
> +	wait_queue_head_t flushq;
> +
> +	int chan_idx;
> +
> +	u32 in_consumed_bytes;
> +	u32 in_current_checkpoint;
> +	u32 out_bytes;
> +
> +	unsigned int in_log2_element_size;
> +	unsigned int out_log2_element_size;
> +	unsigned int in_log2_fifo_size;
> +	unsigned int out_log2_fifo_size;
> +
> +	unsigned int read_data_ok; /* EOF not arrived (yet) */
> +	unsigned int poll_used;
> +	unsigned int flushing;
> +	unsigned int flushed;
> +	unsigned int canceled;
> +
> +	/* Bit fields protected by open_mutex except for initialization */
> +	unsigned readable:1;
> +	unsigned writable:1;
> +	unsigned open_for_read:1;
> +	unsigned open_for_write:1;
> +	unsigned in_synchronous:1;
> +	unsigned out_synchronous:1;
> +	unsigned in_seekable:1;
> +	unsigned out_seekable:1;
> +};
> +
> +struct xillybuffer {
> +	struct list_head entry;
> +	struct xillyusb_endpoint *ep;
> +	void *buf;
> +	unsigned int len;
> +};
> +
> +struct xillyusb_dev {
> +	struct xillyusb_channel *channels;
> +
> +	struct usb_device	*udev;
> +	struct usb_interface	*interface;
> +	struct kref		kref;
> +	struct mutex		io_mutex; /* synchronize I/O with disconnect */
> +	struct workqueue_struct	*workq;
> +
> +	int error;
> +	spinlock_t error_lock; /* protect @error */
> +	struct work_struct wakeup_workitem;
> +
> +	int num_channels;
> +
> +	struct xillyusb_endpoint *msg_ep;
> +	struct xillyusb_endpoint *in_ep;
> +
> +	struct mutex msg_mutex; /* serialize opcode transmission */
> +	int in_bytes_left;
> +	int leftover_chan_num;
> +	unsigned int in_counter;
> +	struct mutex process_in_mutex; /* synchronize wakeup_all() */
> +};
> +
> +/* FPGA to host opcodes */
> +enum {
> +	OPCODE_DATA = 0,
> +	OPCODE_QUIESCE_ACK = 1,
> +	OPCODE_EOF = 2,
> +	OPCODE_REACHED_CHECKPOINT = 3,
> +	OPCODE_CANCELED_CHECKPOINT = 4,
> +};
> +
> +/* Host to FPGA opcodes */
> +enum {
> +	OPCODE_QUIESCE = 0,
> +	OPCODE_REQ_IDT = 1,
> +	OPCODE_SET_CHECKPOINT = 2,
> +	OPCODE_CLOSE = 3,
> +	OPCODE_SET_PUSH = 4,
> +	OPCODE_UPDATE_PUSH = 5,
> +	OPCODE_CANCEL_CHECKPOINT = 6,
> +	OPCODE_SET_ADDR = 7,
> +};
> +
> +/*
> + * fifo_write() and fifo_read() are NOT reentrant (i.e. concurrent multiple
> + * calls to each on the same FIFO is not allowed) however it's OK to have
> + * threads calling each of the two functions once on the same FIFO, and
> + * at the same time.
> + */
> +
> +static int fifo_write(struct xillyfifo *fifo,
> +		      const void *data, unsigned int len,
> +		      int (*copier)(void *, const void *, int))
> +{
> +	unsigned int done = 0;
> +	unsigned int todo = len;
> +	unsigned int nmax;
> +	unsigned int writepos = fifo->writepos;
> +	unsigned int writebuf = fifo->writebuf;
> +
> +	nmax = fifo->size - atomic_read(&fifo->fill);
> +
> +	while (1) {
> +		unsigned int nrail = fifo->bufsize - writepos;
> +		unsigned int n = min(todo, nmax);
> +
> +		if (n == 0) {
> +			/*
> +			 * Ensure copied data is visible before
> +			 * it's accounted for.
> +			 */
> +			smp_wmb();
> +			atomic_add(done, &fifo->fill);

Are you sure this works?  Why is it needed?  Why not just use a simple
lock once and then do all of the accesses you need to under it?  That
way no messing around with atomics and wmb().

> +
> +			fifo->writepos = writepos;
> +			fifo->writebuf = writebuf;
> +
> +			return done;
> +		}
> +
> +		if (n > nrail)
> +			n = nrail;
> +
> +		if ((*copier)(fifo->mem[writebuf] + writepos, data + done, n))
> +			return -EFAULT;

Unless you have a real memory fault (i.e. copy_to/from_user() failed, do
not return this error value.

> +
> +		done += n;
> +		todo -= n;
> +
> +		writepos += n;
> +		nmax -= n;
> +
> +		if (writepos == fifo->bufsize) {
> +			writepos = 0;
> +			writebuf++;
> +
> +			if (writebuf == fifo->bufnum)
> +				writebuf = 0;
> +		}
> +	}
> +}
> +
> +static unsigned int fifo_read(struct xillyfifo *fifo,
> +			      void *data, unsigned int len,
> +			      int (*copier)(void *, const void *, int))
> +{
> +	unsigned int done = 0;
> +	unsigned int todo = len;
> +	unsigned int fill;
> +	unsigned int readpos = fifo->readpos;
> +	unsigned int readbuf = fifo->readbuf;
> +
> +	fill = atomic_read(&fifo->fill);

And the number changed right after reading it :(

Again, no atomics, use a lock please.

This is a USB device, you are NOT doing high-speed data transfers at
all.

> +
> +	/* Ensure that the data accounted for is synchronized in buffer */
> +	smp_rmb();
> +
> +	while (1) {
> +		unsigned int nrail = fifo->bufsize - readpos;
> +		unsigned int n = min(todo, fill);
> +
> +		if (n == 0) {
> +			atomic_sub(done, &fifo->fill);
> +
> +			fifo->readpos = readpos;
> +			fifo->readbuf = readbuf;
> +
> +			return done;
> +		}
> +
> +		if (n > nrail)
> +			n = nrail;
> +
> +		if ((*copier)(data + done, fifo->mem[readbuf] + readpos, n))
> +			return -EFAULT;
> +
> +		done += n;
> +		todo -= n;
> +
> +		readpos += n;
> +		fill -= n;
> +
> +		if (readpos == fifo->bufsize) {
> +			readpos = 0;
> +			readbuf++;
> +
> +			if (readbuf == fifo->bufnum)
> +				readbuf = 0;
> +		}
> +	}
> +}
> +
> +static int fifo_init(struct xillyfifo *fifo,
> +		     unsigned int log2_size)
> +{
> +	unsigned int log2_bufnum;
> +	unsigned int buf_order;
> +	int i;
> +
> +	unsigned int log2_fifo_buf_size;
> +
> +retry:
> +	log2_fifo_buf_size = fifo_buf_order + PAGE_SHIFT;
> +
> +	if (log2_size > log2_fifo_buf_size) {
> +		log2_bufnum = log2_size - log2_fifo_buf_size;
> +		buf_order = fifo_buf_order;
> +		fifo->bufsize = 1 << log2_fifo_buf_size;
> +	} else {
> +		log2_bufnum = 0;
> +		buf_order = (log2_size > PAGE_SHIFT) ?
> +			log2_size - PAGE_SHIFT : 0;
> +		fifo->bufsize = 1 << log2_size;
> +	}
> +
> +	fifo->bufnum = 1 << log2_bufnum;
> +	fifo->size = fifo->bufnum * fifo->bufsize;
> +	fifo->buf_order = buf_order;
> +
> +	fifo->mem = kmalloc_array(fifo->bufnum, sizeof(void *), GFP_KERNEL);
> +
> +	if (!fifo->mem)
> +		return -ENOMEM;
> +
> +	for (i = 0; i < fifo->bufnum; i++) {
> +		fifo->mem[i] = (void *)
> +			__get_free_pages(GFP_KERNEL, buf_order);
> +
> +		if (!fifo->mem[i])
> +			goto memfail;
> +	}
> +
> +	atomic_set(&fifo->fill, 0);
> +	fifo->readpos = 0;
> +	fifo->readbuf = 0;
> +	fifo->writepos = 0;
> +	fifo->writebuf = 0;
> +	init_waitqueue_head(&fifo->waitq);
> +	return 0;
> +
> +memfail:
> +	for (i--; i >= 0; i--)
> +		free_pages((unsigned long)fifo->mem[i], buf_order);
> +
> +	kfree(fifo->mem);
> +	fifo->mem = NULL;
> +
> +	if (fifo_buf_order) {
> +		fifo_buf_order--;
> +		pr_warn("%s: Trying again to allocate FIFO %d bytes, now with segments of %d bytes each\n",
> +			err_name, 1 << log2_size,
> +			1 << (fifo_buf_order + PAGE_SHIFT));

dev_warn(), never use pr_*() in a driver.  You always have a pointer to
a real device, use it.

> +		goto retry;
> +	} else {
> +		pr_err("%s: Failed to allocate FIFO with %d bytes, despite attepts to chop it into small pieces.\n",
> +		       err_name, 1 << log2_size);
> +		return -ENOMEM;
> +	}
> +}
> +
> +static void fifo_mem_release(struct xillyfifo *fifo)
> +{
> +	int i;
> +
> +	if (!fifo->mem)
> +		return;
> +
> +	for (i = 0; i < fifo->bufnum; i++)
> +		free_pages((unsigned long)fifo->mem[i], fifo->buf_order);
> +
> +	kfree(fifo->mem);
> +}
> +
> +/*
> + * Note that endpoint_dealloc() also frees fifo memory (if allocated), even
> + * though endpoint_alloc doesn't allocate that memory.
> + */
> +
> +static void endpoint_dealloc(struct xillyusb_endpoint *ep)
> +{
> +	struct list_head *this, *next;
> +	struct list_head *buffers = &ep->buffers;
> +	unsigned int order = ep->order;
> +
> +	ep->shutting_down = true;
> +
> +	/*
> +	 * The first cancel_work_sync() doesn't just cancel a possibly running
> +	 * work item, but also ensures that if it's re-queued by a URB
> +	 * completer in a race condition, the next execution of the work item
> +	 * will see the ep->shutting_down as true, and do nothing. Hence we're
> +	 * sure all queued URBs are anchored and no new ones will be added
> +	 * after cancel_work_sync() returns.
> +	 * However a second cancel_work_sync() is still required if such race
> +	 * condition would re-queue the work item, since @ep is just about to
> +	 * be freed.
> +	 */
> +
> +	cancel_work_sync(&ep->workitem);
> +	usb_kill_anchored_urbs(&ep->anchor);
> +	cancel_work_sync(&ep->workitem);
> +
> +	fifo_mem_release(&ep->fifo);
> +
> +	list_for_each_safe(this, next, buffers) {
> +		struct xillybuffer *xb =
> +			list_entry(this, struct xillybuffer, entry);
> +
> +		free_pages((unsigned long)xb->buf, order);
> +		kfree(xb);
> +	}
> +
> +	kfree(ep);
> +}
> +
> +static struct xillyusb_endpoint
> +*endpoint_alloc(struct xillyusb_dev *xdev,
> +		u8 ep_num,
> +		void (*work)(struct work_struct *),
> +		unsigned int order,
> +		int bufnum)
> +{
> +	int i;
> +
> +	struct xillyusb_endpoint *ep;
> +
> +	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
> +
> +	if (!ep)
> +		return NULL;
> +
> +	INIT_LIST_HEAD(&ep->buffers);
> +	INIT_LIST_HEAD(&ep->filled_buffers);
> +
> +	spin_lock_init(&ep->buffers_lock);
> +
> +	init_usb_anchor(&ep->anchor);
> +	INIT_WORK(&ep->workitem, work);
> +
> +	ep->order = order;
> +	ep->buffer_size =  1 << (PAGE_SHIFT + order);
> +	ep->outstanding_urbs = 0;
> +	ep->xdev = xdev;
> +	ep->ep_num = ep_num;
> +	ep->shutting_down = false;
> +
> +	for (i = 0; i < bufnum; i++) {
> +		struct xillybuffer *xb;
> +		unsigned long addr;
> +
> +		xb = kzalloc(sizeof(*xb), GFP_KERNEL);
> +
> +		if (!xb) {
> +			endpoint_dealloc(ep);
> +			return NULL;
> +		}
> +
> +		addr = __get_free_pages(GFP_KERNEL, order);
> +
> +		if (!addr) {
> +			kfree(xb);
> +			endpoint_dealloc(ep);
> +			return NULL;
> +		}
> +
> +		xb->buf = (void *)addr;
> +		xb->ep = ep;
> +		list_add_tail(&xb->entry, &ep->buffers);
> +	}
> +	return ep;
> +}
> +
> +static void cleanup_dev(struct kref *kref)
> +{
> +	struct xillyusb_dev *xdev =
> +		container_of(kref, struct xillyusb_dev, kref);
> +
> +	if (xdev->in_ep)
> +		endpoint_dealloc(xdev->in_ep);
> +
> +	if (xdev->msg_ep)
> +		endpoint_dealloc(xdev->msg_ep);
> +
> +	if (xdev->workq)
> +		destroy_workqueue(xdev->workq);
> +
> +	kfree(xdev->channels); /* Argument may be NULL, and that's fine */
> +	kfree(xdev);
> +}
> +
> +/*
> + * wakeup_all() is implemented as a work item, because of the need to be
> + * sure that bulk_in_work() sees xdev->error with a non-zero value if it
> + * runs after all read_data_ok have been cleared. xdev->error is assigned
> + * with this non-zero number prior to queueing the work, but it seems like
> + * only a mutex ensures this correct order of execution.
> + *
> + * In particular, the fact that wakeup_all() and bulk_in_work() are queued on
> + * the same workqueue makes their concurrent execution very unlikely,
> + * however the kernel's API doesn't seem to ensure this strictly.
> + * report_io_error() is possibly called in atomic context and can therefore
> + * not take a mutex.
> + */
> +
> +static void wakeup_all(struct work_struct *work)
> +{
> +	int i;
> +	struct xillyusb_dev *xdev = container_of(work, struct xillyusb_dev,
> +						 wakeup_workitem);
> +
> +	mutex_lock(&xdev->process_in_mutex);
> +
> +	for (i = 0; i < xdev->num_channels; i++) {
> +		struct xillyusb_channel *chan = &xdev->channels[i];
> +
> +		mutex_lock(&chan->lock);
> +
> +		if (chan->in_fifo) {
> +			/*
> +			 * Fake an EOF: Even if such arrives, it won't be
> +			 * processed.
> +			 */
> +			chan->read_data_ok = 0;
> +			wake_up_interruptible(&chan->in_fifo->waitq);
> +		}
> +
> +		if (chan->out_ep)
> +			wake_up_interruptible(&chan->out_ep->fifo.waitq);
> +
> +		mutex_unlock(&chan->lock);
> +
> +		wake_up_interruptible(&chan->flushq);
> +	}
> +
> +	mutex_unlock(&xdev->process_in_mutex);
> +
> +	wake_up_interruptible(&xdev->msg_ep->fifo.waitq);
> +
> +	kref_put(&xdev->kref, cleanup_dev);
> +}
> +
> +static void report_io_error(struct xillyusb_dev *xdev,
> +			    int errcode)
> +{
> +	unsigned long flags;
> +	bool do_once = false;
> +
> +	spin_lock_irqsave(&xdev->error_lock, flags);
> +	if (!xdev->error) {
> +		xdev->error = errcode;
> +		do_once = true;
> +	}
> +	spin_unlock_irqrestore(&xdev->error_lock, flags);
> +
> +	if (do_once) {
> +		kref_get(&xdev->kref); /* xdev is used by work item */
> +		queue_work(xdev->workq, &xdev->wakeup_workitem);
> +	}
> +}
> +
> +/*
> + * safely_assign_in_fifo() changes the value of chan->in_fifo and ensures
> + * the previous pointer is never used after its return.
> + */
> +
> +static void safely_assign_in_fifo(struct xillyusb_channel *chan,
> +				  struct xillyfifo *fifo)
> +{
> +	mutex_lock(&chan->lock);
> +	chan->in_fifo = fifo;
> +	mutex_unlock(&chan->lock);
> +
> +	flush_work(&chan->xdev->in_ep->workitem);
> +}
> +
> +static int xilly_memcpy(void *dst, const void *src, int n)
> +{
> +	memcpy(dst, src, n);
> +	return 0;

Do not "wrap" common kernel functions.

> +}
> +
> +static void bulk_in_completer(struct urb *urb)
> +{
> +	struct xillybuffer *xb = urb->context;
> +	struct xillyusb_endpoint *ep = xb->ep;
> +	unsigned long flags;
> +
> +	if (urb->status) {
> +		if (!(urb->status == -ENOENT ||
> +		      urb->status == -ECONNRESET ||
> +		      urb->status == -ESHUTDOWN))
> +			report_io_error(ep->xdev, -EIO);
> +
> +		spin_lock_irqsave(&ep->buffers_lock, flags);
> +		list_add_tail(&xb->entry, &ep->buffers);
> +		ep->outstanding_urbs--;
> +		spin_unlock_irqrestore(&ep->buffers_lock, flags);
> +
> +		return;
> +	}
> +
> +	xb->len = urb->actual_length;
> +
> +	spin_lock_irqsave(&ep->buffers_lock, flags);
> +	list_add_tail(&xb->entry, &ep->filled_buffers);
> +	spin_unlock_irqrestore(&ep->buffers_lock, flags);
> +
> +	if (!ep->shutting_down)
> +		queue_work(ep->xdev->workq, &ep->workitem);
> +}
> +
> +static void bulk_out_completer(struct urb *urb)
> +{
> +	struct xillybuffer *xb = urb->context;
> +	struct xillyusb_endpoint *ep = xb->ep;
> +	unsigned long flags;
> +
> +	if (urb->status &&
> +	    (!(urb->status == -ENOENT ||
> +	       urb->status == -ECONNRESET ||
> +	       urb->status == -ESHUTDOWN)))
> +		report_io_error(ep->xdev, -EIO);
> +
> +	spin_lock_irqsave(&ep->buffers_lock, flags);
> +	list_add_tail(&xb->entry, &ep->buffers);
> +	ep->outstanding_urbs--;
> +	spin_unlock_irqrestore(&ep->buffers_lock, flags);
> +
> +	if (!ep->shutting_down)
> +		queue_work(ep->xdev->workq, &ep->workitem);
> +}
> +
> +static void try_queue_bulk_in(struct xillyusb_endpoint *ep)
> +{
> +	struct xillyusb_dev *xdev = ep->xdev;
> +	struct xillybuffer *xb;
> +	struct urb *urb;
> +
> +	int rc;
> +	unsigned long flags;
> +	unsigned int bufsize = ep->buffer_size;
> +
> +	if (ep->shutting_down)
> +		return;
> +
> +	mutex_lock(&xdev->io_mutex);
> +
> +	if (!xdev->interface || xdev->error)
> +		goto done;
> +
> +	while (1) {
> +		spin_lock_irqsave(&ep->buffers_lock, flags);
> +
> +		if (list_empty(&ep->buffers)) {
> +			spin_unlock_irqrestore(&ep->buffers_lock, flags);
> +			goto done;
> +		}
> +
> +		xb = list_first_entry(&ep->buffers, struct xillybuffer, entry);
> +		list_del(&xb->entry);
> +		ep->outstanding_urbs++;
> +
> +		spin_unlock_irqrestore(&ep->buffers_lock, flags);
> +
> +		urb = usb_alloc_urb(0, GFP_KERNEL);
> +		if (!urb) {
> +			report_io_error(xdev, -ENOMEM);
> +			goto relist;
> +		}
> +
> +		usb_fill_bulk_urb(urb, xdev->udev,
> +				  usb_rcvbulkpipe(xdev->udev, ep->ep_num),
> +				  xb->buf, bufsize, bulk_in_completer, xb);
> +
> +		usb_anchor_urb(urb, &ep->anchor);
> +
> +		rc = usb_submit_urb(urb, GFP_KERNEL);
> +
> +		if (rc) {
> +			report_io_error(xdev, (rc == -ENOMEM) ? -ENOMEM :
> +					-EIO);
> +			goto unanchor;
> +		}
> +
> +		usb_free_urb(urb); /* This just decrements reference count */
> +	}
> +
> +unanchor:
> +	usb_unanchor_urb(urb);
> +	usb_free_urb(urb);
> +
> +relist:
> +	spin_lock_irqsave(&ep->buffers_lock, flags);
> +	list_add_tail(&xb->entry, &ep->buffers);
> +	ep->outstanding_urbs--;
> +	spin_unlock_irqrestore(&ep->buffers_lock, flags);
> +
> +done:
> +	mutex_unlock(&xdev->io_mutex);
> +}
> +
> +static void try_queue_bulk_out(struct xillyusb_endpoint *ep)
> +{
> +	struct xillyfifo *fifo = &ep->fifo;
> +	struct xillyusb_dev *xdev = ep->xdev;
> +	struct xillybuffer *xb;
> +	struct urb *urb;
> +
> +	int rc;
> +	unsigned int fill;
> +	unsigned long flags;
> +	bool submitted = false;
> +
> +	if (ep->shutting_down)
> +		return;
> +
> +	mutex_lock(&xdev->io_mutex);
> +
> +	if (!xdev->interface || xdev->error)
> +		goto done;
> +
> +	fill = atomic_read(&fifo->fill) & ep->fill_mask;
> +
> +	while (1) {
> +		int count;
> +		unsigned int max_read;
> +
> +		if (fill == 0)
> +			goto done;
> +
> +		spin_lock_irqsave(&ep->buffers_lock, flags);
> +
> +		if ((fill < ep->buffer_size && ep->outstanding_urbs) ||
> +		    list_empty(&ep->buffers)) {
> +			spin_unlock_irqrestore(&ep->buffers_lock, flags);
> +			goto done;
> +		}
> +
> +		xb = list_first_entry(&ep->buffers, struct xillybuffer, entry);
> +		list_del(&xb->entry);
> +		ep->outstanding_urbs++;
> +
> +		spin_unlock_irqrestore(&ep->buffers_lock, flags);
> +
> +		max_read = min(fill, ep->buffer_size);
> +
> +		count = fifo_read(&ep->fifo, xb->buf, max_read, xilly_memcpy);
> +
> +		/*
> +		 * xilly_memcpy always returns 0 => fifo_read can't fail =>
> +		 * count > 0
> +		 */
> +
> +		urb = usb_alloc_urb(0, GFP_KERNEL);
> +		if (!urb) {
> +			report_io_error(xdev, -ENOMEM);
> +			goto relist;
> +		}
> +
> +		usb_fill_bulk_urb(urb, xdev->udev,
> +				  usb_sndbulkpipe(xdev->udev, ep->ep_num),
> +				  xb->buf, count, bulk_out_completer, xb);
> +
> +		usb_anchor_urb(urb, &ep->anchor);
> +
> +		rc = usb_submit_urb(urb, GFP_KERNEL);
> +
> +		if (rc) {
> +			report_io_error(xdev, (rc == -ENOMEM) ? -ENOMEM :
> +					-EIO);
> +			goto unanchor;
> +		}
> +
> +		usb_free_urb(urb); /* This just decrements reference count */
> +
> +		fill -= count;
> +		submitted = true;
> +	}
> +
> +unanchor:
> +	usb_unanchor_urb(urb);
> +	usb_free_urb(urb);
> +
> +relist:
> +	spin_lock_irqsave(&ep->buffers_lock, flags);
> +	list_add_tail(&xb->entry, &ep->buffers);
> +	ep->outstanding_urbs--;
> +	spin_unlock_irqrestore(&ep->buffers_lock, flags);
> +
> +done:
> +	mutex_unlock(&xdev->io_mutex);
> +
> +	if (submitted)
> +		wake_up_interruptible(&fifo->waitq);
> +}
> +
> +static void bulk_out_work(struct work_struct *work)
> +{
> +	struct xillyusb_endpoint *ep = container_of(work,
> +						    struct xillyusb_endpoint,
> +						    workitem);
> +	try_queue_bulk_out(ep);
> +}
> +
> +static int process_in_opcode(struct xillyusb_dev *xdev,
> +			     int opcode,
> +			     int chan_num)
> +{
> +	struct xillyusb_channel *chan;
> +	int chan_idx = chan_num >> 1;
> +
> +	if (chan_idx >= xdev->num_channels) {
> +		pr_err("%s: Received illegal channel ID %d from FPGA\n",
> +		       err_name, chan_num);
> +		return -EIO;
> +	}
> +
> +	chan = &xdev->channels[chan_idx];
> +
> +	switch (opcode) {
> +	case OPCODE_EOF:
> +		if (!READ_ONCE(chan->read_data_ok)) {
> +			pr_err("%s: Received unexpected EOF for channel %d\n",
> +			       err_name, chan_num);
> +			return -EIO;
> +		}
> +
> +		/*
> +		 * A write memory barrier ensures that the FIFO's fill level
> +		 * is visible before read_data_ok turns zero, so the data in
> +		 * the FIFO isn't missed by the consumer.
> +		 */
> +		smp_wmb();
> +		WRITE_ONCE(chan->read_data_ok, 0);
> +		wake_up_interruptible(&chan->in_fifo->waitq);
> +		break;
> +
> +	case OPCODE_REACHED_CHECKPOINT:
> +		chan->flushing = 0;
> +		wake_up_interruptible(&chan->flushq);
> +		break;
> +
> +	case OPCODE_CANCELED_CHECKPOINT:
> +		chan->canceled = 1;
> +		wake_up_interruptible(&chan->flushq);
> +		break;
> +
> +	default:
> +		pr_err("%s: Received illegal opcode %d from FPGA\n",
> +		       err_name, opcode);
> +		return -EIO;
> +	}
> +
> +	return 0;
> +}
> +
> +static int process_bulk_in(struct xillybuffer *xb)
> +{
> +	struct xillyusb_endpoint *ep = xb->ep;
> +	struct xillyusb_dev *xdev = ep->xdev;
> +	int dws = xb->len >> 2;
> +	__le32 *p = xb->buf;
> +	u32 ctrlword;
> +	struct xillyusb_channel *chan;
> +	struct xillyfifo *fifo;
> +	int chan_num = 0, opcode;
> +	int chan_idx;
> +	int bytes, count, dwconsume;
> +	int in_bytes_left = 0;
> +	int rc;
> +
> +	if ((dws << 2) != xb->len) {
> +		pr_err("%s: Received BULK IN transfer with %d bytes, not a multiple of 4\n",
> +		       err_name, xb->len);
> +		return -EIO;
> +	}
> +
> +	if (xdev->in_bytes_left) {
> +		bytes = min(xdev->in_bytes_left, dws << 2);
> +		in_bytes_left = xdev->in_bytes_left - bytes;
> +		chan_num = xdev->leftover_chan_num;
> +		goto resume_leftovers;
> +	}
> +
> +	while (dws) {
> +		ctrlword = le32_to_cpu(*p++);
> +		dws--;
> +
> +		chan_num = ctrlword & 0xfff;
> +		count = (ctrlword >> 12) & 0x3ff;
> +		opcode = (ctrlword >> 24) & 0xf;
> +
> +		if (opcode != OPCODE_DATA) {
> +			unsigned int in_counter = xdev->in_counter++ & 0x3ff;
> +
> +			if (count != in_counter) {
> +				pr_err("%s: Expected opcode counter %d, got %d\n",
> +				       err_name, in_counter, count);
> +				return -EIO;
> +			}
> +
> +			rc = process_in_opcode(xdev, opcode, chan_num);
> +
> +			if (rc)
> +				return rc;
> +
> +			continue;
> +		}
> +
> +		bytes = min(count + 1, dws << 2);
> +		in_bytes_left = count + 1 - bytes;
> +
> +resume_leftovers:
> +		chan_idx = chan_num >> 1;
> +
> +		if (!(chan_num & 1) || chan_idx >= xdev->num_channels ||
> +		    !READ_ONCE(xdev->channels[chan_idx].read_data_ok)) {
> +			pr_err("%s: Received illegal channel ID %d from FPGA\n",
> +			       err_name, chan_num);
> +			return -EIO;
> +		}
> +		chan = &xdev->channels[chan_idx];
> +
> +		fifo = chan->in_fifo;
> +
> +		if (unlikely(!fifo))
> +			return -EIO; /* We got really unexpected data */
> +
> +		if (bytes != fifo_write(fifo, p, bytes, xilly_memcpy)) {
> +			pr_err("%s: Misbehaving FPGA overflew an upstream FIFO!\n",
> +			       err_name);
> +			return -EIO;
> +		}
> +
> +		wake_up_interruptible(&fifo->waitq);
> +
> +		dwconsume = (bytes + 3) >> 2;
> +		dws -= dwconsume;
> +		p += dwconsume;
> +	}
> +
> +	xdev->in_bytes_left = in_bytes_left;
> +	xdev->leftover_chan_num = chan_num;
> +	return 0;
> +}
> +
> +static void bulk_in_work(struct work_struct *work)
> +{
> +	struct xillyusb_endpoint *ep =
> +		container_of(work, struct xillyusb_endpoint, workitem);
> +	struct xillyusb_dev *xdev = ep->xdev;
> +	unsigned long flags;
> +	struct xillybuffer *xb;
> +	bool consumed = false;
> +	int rc = 0;
> +
> +	mutex_lock(&xdev->process_in_mutex);
> +
> +	spin_lock_irqsave(&ep->buffers_lock, flags);
> +
> +	while (1) {
> +		if (list_empty(&ep->filled_buffers)) {
> +			spin_unlock_irqrestore(&ep->buffers_lock, flags);
> +
> +			mutex_unlock(&xdev->process_in_mutex);
> +
> +			if (consumed)
> +				try_queue_bulk_in(ep);
> +
> +			return;
> +		}
> +
> +		xb = list_first_entry(&ep->filled_buffers, struct xillybuffer,
> +				      entry);
> +		list_del(&xb->entry);
> +
> +		spin_unlock_irqrestore(&ep->buffers_lock, flags);
> +
> +		consumed = true;
> +
> +		if (!xdev->error)
> +			rc = process_bulk_in(xb);
> +
> +		if (rc) {
> +			mutex_unlock(&xdev->process_in_mutex);
> +			report_io_error(xdev, rc);
> +			return;
> +		}
> +
> +		spin_lock_irqsave(&ep->buffers_lock, flags);
> +		list_add_tail(&xb->entry, &ep->buffers);
> +		ep->outstanding_urbs--;
> +	}
> +}
> +
> +static int xillyusb_send_opcode(struct xillyusb_dev *xdev,
> +				int chan_num, char opcode, u32 data)
> +{
> +	struct xillyusb_endpoint *ep = xdev->msg_ep;
> +	struct xillyfifo *fifo = &ep->fifo;
> +	__le32 msg[2];
> +
> +	int rc = 0;
> +
> +	msg[0] = cpu_to_le32((chan_num & 0xfff) |
> +			     ((opcode & 0xf) << 24));
> +	msg[1] = cpu_to_le32(data);
> +
> +	mutex_lock(&xdev->msg_mutex);
> +
> +	/*
> +	 * The wait queue is woken with the interruptible variant, so the
> +	 * wait function matches, however returning because of an interrupt
> +	 * will mess things up considerably, in particular when the caller is
> +	 * the release method. And the xdev->error part prevents being stuck
> +	 * forever: Just pull the USB plug.
> +	 */
> +
> +	while (wait_event_interruptible(fifo->waitq,
> +					((atomic_read(&fifo->fill)
> +					  <= (fifo->size - 8)) ||
> +					 xdev->error)))
> +		; /* Empty loop */
> +
> +	if (xdev->error) {
> +		rc = xdev->error;
> +		goto unlock_done;
> +	}
> +
> +	fifo_write(fifo, (void *)msg, 8, xilly_memcpy);
> +
> +	try_queue_bulk_out(ep);
> +
> +unlock_done:
> +	mutex_unlock(&xdev->msg_mutex);
> +
> +	return rc;
> +}
> +
> +/*
> + * Note that flush_downstream() merely waits for the data to arrive to
> + * the application logic at the FPGA -- unlike PCIe Xillybus' counterpart,
> + * it does nothing to make it happen (and neither is it necessary).
> + *
> + * This function is not reentrant for the same @chan, but this is covered
> + * by the fact that for any given @chan, it's called either by the open,
> + * write, llseek and flush fops methods, which can't run in parallel (and the
> + * write + flush and llseek method handlers are protected with out_mutex).
> + *
> + * chan->flushed is there to avoid multiple flushes at the same position,
> + * in particular as a result of programs that close the file descriptor
> + * e.g. after a dup2() for redirection.
> + */
> +
> +static int flush_downstream(struct xillyusb_channel *chan,
> +			    long timeout,
> +			    bool interruptible)
> +{
> +	struct xillyusb_dev *xdev = chan->xdev;
> +	int chan_num = chan->chan_idx << 1;
> +	long deadline, left_to_sleep;
> +	int rc;
> +
> +	if (chan->flushed)
> +		return 0;
> +
> +	deadline = jiffies + 1 + timeout;
> +
> +	if (chan->flushing) {
> +		long cancel_deadline = jiffies + 1 + XILLY_RESPONSE_TIMEOUT;
> +
> +		chan->canceled = 0;
> +		rc = xillyusb_send_opcode(xdev, chan_num,
> +					  OPCODE_CANCEL_CHECKPOINT, 0);
> +
> +		if (rc)
> +			return rc; /* Only real error, never -EINTR */
> +
> +		/* Ignoring interrupts. Cancellation must be handled */
> +		while (!chan->canceled) {
> +			left_to_sleep = cancel_deadline - ((long)jiffies);
> +
> +			if (left_to_sleep <= 0) {
> +				report_io_error(xdev, -EIO);
> +				pr_err("%s: Fatal error: Timed out on flush cancellation request.\n",
> +				       err_name);
> +				return -EIO;
> +			}
> +
> +			rc = wait_event_interruptible_timeout(chan->flushq,
> +							      chan->canceled ||
> +							      xdev->error,
> +							      left_to_sleep);
> +
> +			if (xdev->error)
> +				return xdev->error;
> +		}
> +	}
> +
> +	chan->flushing = 1;
> +
> +	/*
> +	 * The checkpoint is given in terms of data elements, not bytes. As
> +	 * a result, if less than an element's worth of data is stored in the
> +	 * FIFO, it's not flushed, including the flush before closing, which
> +	 * means that such data is lost. This is consistent with PCIe Xillybus.
> +	 */
> +
> +	rc = xillyusb_send_opcode(xdev, chan_num,
> +				  OPCODE_SET_CHECKPOINT,
> +				  chan->out_bytes >>
> +				  chan->out_log2_element_size);
> +
> +	if (rc)
> +		return rc; /* Only real error, never -EINTR */
> +
> +	if (!timeout) {
> +		while (chan->flushing) {
> +			rc = wait_event_interruptible(chan->flushq,
> +						      !chan->flushing ||
> +						      xdev->error);
> +			if (xdev->error)
> +				return xdev->error;
> +
> +			if (interruptible && rc)
> +				return -EINTR;
> +		}
> +
> +		goto done;
> +	}
> +
> +	while (chan->flushing) {
> +		left_to_sleep = deadline - ((long)jiffies);
> +
> +		if (left_to_sleep <= 0)
> +			return -ETIMEDOUT;
> +
> +		rc = wait_event_interruptible_timeout(chan->flushq,
> +						      !chan->flushing ||
> +						      xdev->error,
> +						      left_to_sleep);
> +
> +		if (xdev->error)
> +			return xdev->error;
> +
> +		if (interruptible && rc < 0)
> +			return -EINTR;
> +	}
> +
> +done:
> +	chan->flushed = 1;
> +	return 0;
> +}
> +
> +/* request_read_anything(): Ask the FPGA for any little amount of data */
> +static int request_read_anything(struct xillyusb_channel *chan,
> +				 char opcode)
> +{
> +	struct xillyusb_dev *xdev = chan->xdev;
> +	unsigned int sh = chan->in_log2_element_size;
> +	int chan_num = (chan->chan_idx << 1) | 1;
> +	u32 mercy = chan->in_consumed_bytes + (2 << sh) - 1;
> +
> +	return xillyusb_send_opcode(xdev, chan_num, opcode, mercy >> sh);
> +}
> +
> +static int xillyusb_open(struct inode *inode, struct file *filp)
> +{
> +	struct xillyusb_dev *xdev;
> +	struct xillyusb_channel *chan;
> +	struct xillyfifo *in_fifo = NULL;
> +	struct xillyusb_endpoint *out_ep = NULL;
> +	int rc;
> +	int index;
> +
> +	rc = xillybus_find_inode(inode, (void **)&xdev, &index);
> +	if (rc)
> +		return rc;
> +
> +	chan = &xdev->channels[index];
> +	filp->private_data = chan;
> +
> +	mutex_lock(&open_mutex);

Why do you think you need this?  What is it protecting you from?

Lock data, not code.

> +
> +	rc = -ENODEV;
> +
> +	if (((filp->f_mode & FMODE_READ) && !chan->readable) ||
> +	    ((filp->f_mode & FMODE_WRITE) && !chan->writable))
> +		goto unmutex_fail;
> +
> +	if ((filp->f_flags & O_NONBLOCK) && (filp->f_mode & FMODE_READ) &&
> +	    chan->in_synchronous) {
> +		pr_err("%s: open() failed: O_NONBLOCK not allowed for read on this device\n",
> +		       err_name);
> +		goto unmutex_fail;
> +	}
> +
> +	if ((filp->f_flags & O_NONBLOCK) && (filp->f_mode & FMODE_WRITE) &&
> +	    chan->out_synchronous) {
> +		pr_err("%s: open() failed: O_NONBLOCK not allowed for write on this device\n",
> +		       err_name);
> +		goto unmutex_fail;
> +	}
> +
> +	rc = -EBUSY;
> +
> +	if (((filp->f_mode & FMODE_READ) && chan->open_for_read) ||
> +	    ((filp->f_mode & FMODE_WRITE) && chan->open_for_write))
> +		goto unmutex_fail;
> +
> +	kref_get(&xdev->kref);
> +
> +	if (filp->f_mode & FMODE_READ)
> +		chan->open_for_read = 1;
> +
> +	if (filp->f_mode & FMODE_WRITE)
> +		chan->open_for_write = 1;
> +
> +	mutex_unlock(&open_mutex);
> +
> +	if (filp->f_mode & FMODE_WRITE) {
> +		out_ep = endpoint_alloc(xdev,
> +					(chan->chan_idx + 2) | USB_DIR_OUT,
> +					bulk_out_work,
> +					urb_buforder, urb_bufnum);
> +
> +		if (!out_ep) {
> +			rc = -ENOMEM;
> +			goto unopen;
> +		}
> +
> +		rc = fifo_init(&out_ep->fifo, chan->out_log2_fifo_size);
> +
> +		if (rc)
> +			goto late_unopen;
> +
> +		out_ep->fill_mask = -(1 << chan->out_log2_element_size);
> +		chan->out_bytes = 0;
> +		chan->flushed = 0;
> +
> +		/*
> +		 * Sending a flush request to a previously closed stream
> +		 * effectively opens it, and also waits until the command is
> +		 * confirmed by the FPGA. The latter is necessary because the
> +		 * data is sent through a separate BULK OUT endpoint, and the
> +		 * xHCI controller is free to reorder transmissions.
> +		 *
> +		 * This can't go wrong unless there's a serious hardware error
> +		 * (or the computer is stuck for 500 ms?)
> +		 */
> +		rc = flush_downstream(chan, XILLY_RESPONSE_TIMEOUT, false);
> +
> +		if (rc == -ETIMEDOUT) {
> +			rc = -EIO;
> +			report_io_error(xdev, rc);
> +			pr_err("%s: Fatal error: Hardware timed out to open request.\n",
> +			       err_name);
> +		}
> +
> +		if (rc)
> +			goto late_unopen;
> +	}
> +
> +	if (filp->f_mode & FMODE_READ) {
> +		in_fifo = kzalloc(sizeof(*in_fifo), GFP_KERNEL);
> +
> +		if (!in_fifo) {
> +			rc = -ENOMEM;
> +			goto late_unopen;
> +		}
> +
> +		rc = fifo_init(in_fifo, chan->in_log2_fifo_size);
> +
> +		if (rc) {
> +			kfree(in_fifo);
> +			goto late_unopen;
> +		}
> +	}
> +
> +	mutex_lock(&chan->lock);
> +	if (in_fifo) {
> +		chan->in_fifo = in_fifo;
> +		chan->read_data_ok = 1;
> +	}
> +	if (out_ep)
> +		chan->out_ep = out_ep;
> +	mutex_unlock(&chan->lock);
> +
> +	if (in_fifo) {
> +		u32 in_checkpoint = 0;
> +
> +		if (!chan->in_synchronous)
> +			in_checkpoint = in_fifo->size >>
> +				chan->in_log2_element_size;
> +
> +		chan->in_consumed_bytes = 0;
> +		chan->poll_used = 0;
> +		chan->in_current_checkpoint = in_checkpoint;
> +		rc = xillyusb_send_opcode(xdev, (chan->chan_idx << 1) | 1,
> +					  OPCODE_SET_CHECKPOINT,
> +					  in_checkpoint);
> +
> +		if (rc) /* Failure guarantees that opcode wasn't sent */
> +			goto unfifo;
> +
> +		/*
> +		 * In non-blocking mode, request the FPGA to send any data it
> +		 * has right away. Otherwise, the first read() will always
> +		 * return -EAGAIN, which is OK strictly speaking, but ugly.
> +		 * Checking and unrolling if this fails isn't worth the
> +		 * effort -- the error is propagated to the first read()
> +		 * anyhow.
> +		 */
> +		if (filp->f_flags & O_NONBLOCK)
> +			request_read_anything(chan, OPCODE_SET_PUSH);
> +	}
> +
> +	return 0;
> +
> +unfifo:
> +	if (in_fifo) {
> +		chan->read_data_ok = 0;
> +		safely_assign_in_fifo(chan, NULL);
> +		fifo_mem_release(in_fifo);
> +	}
> +
> +	if (out_ep) {
> +		mutex_lock(&chan->lock);
> +		chan->out_ep = NULL;
> +		mutex_unlock(&chan->lock);
> +	}
> +
> +late_unopen:
> +	if (out_ep)
> +		endpoint_dealloc(out_ep);
> +
> +unopen:
> +	mutex_lock(&open_mutex);
> +
> +	if (filp->f_mode & FMODE_READ)
> +		chan->open_for_read = 0;
> +
> +	if (filp->f_mode & FMODE_WRITE)
> +		chan->open_for_write = 0;
> +
> +	mutex_unlock(&open_mutex);
> +
> +	kref_put(&xdev->kref, cleanup_dev);
> +
> +	return rc;
> +
> +unmutex_fail:
> +	mutex_unlock(&open_mutex);
> +	return rc;
> +}
> +
> +static int xilly_copy_to_user(void *dst, const void *src, int n)
> +{
> +	return copy_to_user((void __user *)dst, src, n);
> +}
> +
> +static ssize_t xillyusb_read(struct file *filp, char __user *userbuf,
> +			     size_t count, loff_t *f_pos)
> +{
> +	struct xillyusb_channel *chan = filp->private_data;
> +	struct xillyusb_dev *xdev = chan->xdev;
> +	struct xillyfifo *fifo = chan->in_fifo;
> +	int chan_num = (chan->chan_idx << 1) | 1;
> +
> +	long deadline, left_to_sleep;
> +	int bytes_done = 0;
> +	bool sent_set_push = false;
> +	int rc;
> +
> +	deadline = jiffies + 1 + XILLY_RX_TIMEOUT;
> +
> +	rc = mutex_lock_interruptible(&chan->in_mutex);
> +
> +	if (rc)
> +		return rc;
> +
> +	while (1) {
> +		u32 fifo_checkpoint_bytes, complete_checkpoint_bytes;
> +		u32 complete_checkpoint, fifo_checkpoint;
> +		u32 checkpoint;
> +		s32 diff, leap;
> +		unsigned int sh = chan->in_log2_element_size;
> +		bool checkpoint_for_complete;
> +
> +		rc = fifo_read(fifo, (__force void *)userbuf + bytes_done,
> +			       count - bytes_done, xilly_copy_to_user);
> +
> +		if (rc < 0)
> +			break;
> +
> +		bytes_done += rc;
> +		chan->in_consumed_bytes += rc;
> +
> +		left_to_sleep = deadline - ((long)jiffies);
> +
> +		/*
> +		 * Some 32-bit arithmetics that may wrap. Note that
> +		 * complete_checkpoint is rounded up to the closest element
> +		 * boundary, because the read() can't be completed otherwise.
> +		 * fifo_checkpoint_bytes is rounded down, because it protects
> +		 * in_fifo from overflowing.
> +		 */
> +
> +		fifo_checkpoint_bytes = chan->in_consumed_bytes + fifo->size;
> +		complete_checkpoint_bytes =
> +			chan->in_consumed_bytes + count - bytes_done;
> +
> +		fifo_checkpoint = fifo_checkpoint_bytes >> sh;
> +		complete_checkpoint =
> +			(complete_checkpoint_bytes + (1 << sh) - 1) >> sh;
> +
> +		diff = (fifo_checkpoint - complete_checkpoint) << sh;
> +
> +		if (chan->in_synchronous && diff >= 0) {
> +			checkpoint = complete_checkpoint;
> +			checkpoint_for_complete = true;
> +		} else {
> +			checkpoint = fifo_checkpoint;
> +			checkpoint_for_complete = false;
> +		}
> +
> +		leap = (checkpoint - chan->in_current_checkpoint) << sh;
> +
> +		/*
> +		 * To prevent flooding of OPCODE_SET_CHECKPOINT commands as
> +		 * data is consumed, it's issued only if it moves the
> +		 * checkpoint by at least an 8th of the FIFO's size, or if
> +		 * it's necessary to complete the number of bytes requested by
> +		 * the read() call.
> +		 *
> +		 * chan->read_data_ok is checked to spare an unnecessary
> +		 * submission after receiving EOF, however it's harmless if
> +		 * such slips away.
> +		 */
> +
> +		if (chan->read_data_ok &&
> +		    (leap > (fifo->size >> 3) ||
> +		     (checkpoint_for_complete && leap > 0))) {
> +			chan->in_current_checkpoint = checkpoint;
> +			rc = xillyusb_send_opcode(xdev, chan_num,
> +						  OPCODE_SET_CHECKPOINT,
> +						  checkpoint);
> +
> +			if (rc)
> +				break;
> +		}
> +
> +		if (bytes_done == count ||
> +		    (left_to_sleep <= 0 && bytes_done))
> +			break;
> +
> +		/*
> +		 * Reaching here means that the FIFO was empty at the call to
> +		 * fifo_read() above, but not necessarily right now. Error
> +		 * and EOF are checked and reported only now, so that no data
> +		 * that managed its way to the FIFO is lost.
> +		 */
> +
> +		if (!READ_ONCE(chan->read_data_ok)) { /* FPGA has sent EOF */
> +			/* Has data slipped into the FIFO since fifo_read()? */
> +			smp_rmb();
> +			if (atomic_read(&fifo->fill))
> +				continue;
> +
> +			rc = 0;
> +			break;
> +		}
> +
> +		if (xdev->error) {
> +			rc = xdev->error;
> +			break;
> +		}
> +
> +		if (filp->f_flags & O_NONBLOCK) {
> +			rc = -EAGAIN;
> +			break;
> +		}
> +
> +		if (left_to_sleep > 0) {
> +			if (!sent_set_push) {
> +				rc = xillyusb_send_opcode(xdev, chan_num,
> +							  OPCODE_SET_PUSH,
> +							  complete_checkpoint);
> +
> +				if (rc)
> +					break;
> +
> +				sent_set_push = true;
> +			}
> +
> +			/*
> +			 * Note that when xdev->error is set (e.g. when the
> +			 * device is unplugged), read_data_ok turns zero and
> +			 * fifo->waitq is awaken.
> +			 * Therefore no special attention to xdev->error.
> +			 */
> +
> +			rc = wait_event_interruptible_timeout
> +				(fifo->waitq,
> +				 atomic_read(&fifo->fill) ||
> +				 !chan->read_data_ok,
> +				 left_to_sleep);
> +		} else { /* bytes_done == 0 */
> +			/* Tell FPGA to send anything it has */
> +			rc = request_read_anything(chan, OPCODE_UPDATE_PUSH);
> +
> +			if (rc)
> +				break;
> +
> +			rc = wait_event_interruptible
> +				(fifo->waitq,
> +				 atomic_read(&fifo->fill) ||
> +				 !chan->read_data_ok);
> +		}
> +
> +		if (rc < 0) {
> +			rc = -EINTR;
> +			break;
> +		}
> +	}
> +
> +	if (((filp->f_flags & O_NONBLOCK) || chan->poll_used) &&
> +	    !atomic_read(&fifo->fill))
> +		request_read_anything(chan, OPCODE_SET_PUSH);
> +
> +	mutex_unlock(&chan->in_mutex);
> +
> +	if (bytes_done)
> +		return bytes_done;
> +
> +	return rc;
> +}
> +
> +static int xillyusb_flush(struct file *filp, fl_owner_t id)
> +{
> +	struct xillyusb_channel *chan = filp->private_data;
> +	int rc;
> +
> +	if (!(filp->f_mode & FMODE_WRITE))
> +		return 0;
> +
> +	rc = mutex_lock_interruptible(&chan->out_mutex);
> +
> +	if (rc)
> +		return rc;
> +
> +	/*
> +	 * One second's timeout on flushing. Interrupts are ignored, because if
> +	 * the user pressed CTRL-C, that interrupt will still be in flight by
> +	 * the time we reach here, and the opportunity to flush is lost.
> +	 */
> +	rc = flush_downstream(chan, HZ, false);
> +
> +	if (rc == -ETIMEDOUT)
> +		pr_warn("%s: Timed out while flushing. Output data may be lost.\n",
> +			err_name);
> +
> +	mutex_unlock(&chan->out_mutex);
> +
> +	return rc;
> +}
> +
> +static int xilly_copy_from_user(void *dst, const void *src, int n)
> +{
> +	return copy_from_user(dst, (const void __user *)src, n);
> +}
> +
> +static ssize_t xillyusb_write(struct file *filp, const char __user *userbuf,
> +			      size_t count, loff_t *f_pos)
> +{
> +	struct xillyusb_channel *chan = filp->private_data;
> +	struct xillyusb_dev *xdev = chan->xdev;
> +	struct xillyfifo *fifo = &chan->out_ep->fifo;
> +	int rc;
> +
> +	rc = mutex_lock_interruptible(&chan->out_mutex);
> +
> +	if (rc)
> +		return rc;
> +
> +	while (1) {
> +		if (xdev->error) {
> +			rc = xdev->error;
> +			break;
> +		}
> +
> +		if (count == 0)
> +			break;
> +
> +		rc = fifo_write(fifo, (__force void *)userbuf, count,
> +				xilly_copy_from_user);
> +
> +		if (rc != 0)
> +			break;
> +
> +		if (filp->f_flags & O_NONBLOCK) {
> +			rc = -EAGAIN;
> +			break;
> +		}
> +
> +		if (wait_event_interruptible
> +		    (fifo->waitq,
> +		     (atomic_read(&fifo->fill) != fifo->size) ||
> +		     xdev->error)) {
> +			rc = -EINTR;
> +			break;
> +		}
> +	}
> +
> +	if (rc < 0)
> +		goto done;
> +
> +	chan->out_bytes += rc;
> +
> +	if (rc) {
> +		try_queue_bulk_out(chan->out_ep);
> +		chan->flushed = 0;
> +	}
> +
> +	if (chan->out_synchronous) {
> +		int flush_rc = flush_downstream(chan, 0, true);
> +
> +		if (flush_rc && !rc)
> +			rc = flush_rc;
> +	}
> +
> +done:
> +	mutex_unlock(&chan->out_mutex);
> +
> +	return rc;
> +}
> +
> +static int xillyusb_release(struct inode *inode, struct file *filp)
> +{
> +	struct xillyusb_channel *chan = filp->private_data;
> +	struct xillyusb_dev *xdev = chan->xdev;
> +	int rc_read = 0, rc_write = 0;
> +
> +	if (filp->f_mode & FMODE_READ) {
> +		struct xillyfifo *in_fifo = chan->in_fifo;
> +
> +		rc_read = xillyusb_send_opcode(xdev, (chan->chan_idx << 1) | 1,
> +					       OPCODE_CLOSE, 0);
> +		/*
> +		 * If rc_read is nonzero, xdev->error indicates a global
> +		 * device error. The error is reported later, so that
> +		 * resources are freed.
> +		 *
> +		 * Looping on wait_event_interruptible() kinda breaks the idea
> +		 * of being interruptible, and this should have been
> +		 * wait_event(). Only it's being waken with
> +		 * wake_up_interruptible() for the sake of other uses. If
> +		 * there's a global device error, chan->read_data_ok is
> +		 * deasserted and the wait queue is awaken, so this is covered.
> +		 */
> +
> +		while (wait_event_interruptible(in_fifo->waitq,
> +						!chan->read_data_ok))
> +			; /* Empty loop */
> +
> +		safely_assign_in_fifo(chan, NULL);
> +		fifo_mem_release(in_fifo);
> +
> +		mutex_lock(&open_mutex);
> +		chan->open_for_read = 0;
> +		mutex_unlock(&open_mutex);
> +	}
> +
> +	if (filp->f_mode & FMODE_WRITE) {
> +		struct xillyusb_endpoint *ep = chan->out_ep;
> +		/*
> +		 * chan->flushing isn't zeroed. If the pre-release flush timed
> +		 * out, a cancel request will be sent before the next
> +		 * OPCODE_SET_CHECKPOINT (i.e. when the file is opened again).
> +		 * This is despite that the FPGA forgets about the checkpoint
> +		 * request as the file closes. Still, in an exceptional race
> +		 * condition, the FPGA could send an OPCODE_REACHED_CHECKPOINT
> +		 * just before closing that would reach the host after the
> +		 * file has re-opened.
> +		 */
> +
> +		mutex_lock(&chan->lock);
> +		chan->out_ep = NULL;
> +		mutex_unlock(&chan->lock);
> +
> +		endpoint_dealloc(ep);
> +
> +		/* See comments on rc_read above */
> +		rc_write = xillyusb_send_opcode(xdev, chan->chan_idx << 1,
> +						OPCODE_CLOSE, 0);
> +
> +		mutex_lock(&open_mutex);
> +		chan->open_for_write = 0;
> +		mutex_unlock(&open_mutex);
> +	}
> +
> +	kref_put(&xdev->kref, cleanup_dev);
> +
> +	return rc_read ? rc_read : rc_write;
> +}
> +
> +static loff_t xillyusb_llseek(struct file *filp, loff_t offset, int whence)

USB devices do not have a "seek", why is this needed?

thanks,

greg k-h


More information about the devel mailing list